Hosei University 
Faculty of Bioscience and Applied Chemistry 
Department of Frontier Bioscience 


My website is here.  

Only items to be output You can display.

Yale University  Department of Biophysics and Biochemistry  Postgraduate fellow  1988/05/16-1990/04/30 
Yale University  Department of Biophysics and Biochemistry  Postdoctoral associate  1990/05/01-1991/03/31 
Nagoya University  Department of Molecular Biology, Faculty of Science  Assistant professor  1991/04/01-1996/03/31 
Nagoya University  Division of Biological Science, Graduate School of Science  Assistant professor  1996/04/01-1997/11/30 
Nagoya University  Division of Biological Science, Graduate School of Science  Associate professor  1997/12/01-2007/03/31 
Hose University  Department of Frontier Bioscience, Faculty of Engineering  Professor  2007/04/01-2009/03/31 
Hose University  Research Center for Micro-Nano Technology  Research fellow (Professor)  2007/04/01-Present 
Hose University  Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry  Professor  2009/04/01-Present 
Hosei University  Faculty of Bioscience and Applied Chemistry  Dean  2014/04/01-2016/03/31 
法政大学  副学長補佐  2017/07/01-Present 

Academic background
The University of Tokyo  Faculty of Science  Department of Biology  1983/03/31  Graduated 
The University of Tokyo  Graduate School, Division of Science  Department of Botany  Master course  1985/03/31  Completed 
The University of Tokyo  Graduate School, Division of Science  Department of Botany  Doctor course  1990/05/31  Completed 

Academic degrees
Ph. D.  The University of Tokyo  1990/05/31 

Research Areas
Molecular Biology 
Bacteriology (including mycology) 

Research keywords
Escherichia coli 
Vibrio spp. 
environmental response 
signal transduction 
two-component regulatory system 
protein phosphorylation 
protein methylation 
flagellar motor 
membrane protein 
cellular localization 
supramolecular complex 
protein-protein interaction 
molecular recognition 
energy transduction 
gene expression 

Subject of research
Molecular mechanisms underlying bacterial chemoaxis  receptor, kinase, flagella 
Molecular mechanisms underlying bacterial responses to environmental stimuli  two-component regulatory system, histidine kinase, response regulator 
Molecular mechanisms underlying expression and assembly of bacterial xenobiotic efflux systems  multidrug resistance, transporter, molecular imaging, two-component system 
Structure-function relationship of the bacterial chemoreceptors  ligand recognition, signal transduction, X-ray crystallography 
Mechanisms underlying the control of bacterial flagellar rotation  flagellar motor, chemotaxis, two-component system, proton motive force 

Research Projects (Competitive Research Funds)
Optical and electron microscopic analyses on the mechanisms underlying the arrangement of bacterial membrane protein complexes  Science research expense  Grant-in-Aid for challenging Exploratory Research  2012/04/01-2015/03/31 
Molecular imaging analyses on intracellular dynamics of the xenobiotic exporter  Science research expense  Grant-in-Aid for Scientific Research on Innovative Areas  2012/04/01-2014/03/31 
Regulation of environmental responses and its physiological significance in Vibrio app.  Science research expense  Grant-in-Aid for Scientific Research(B)  2010/04/01-2014/03/31 
原核生物シグナル伝達蛋白質複合体の構造と機能  Science research expense  Grant-in-Aid for Scientific Research on Priority Areas  2008/04/01-2010/03/31 
細菌膜貫通型受容体の局在と細胞膜の機能的・構造的分化  Science research expense  Grant-in-Aid for Scientific Research(B)  2007/04/01-2010/03/31 
View details...

Handbook of Self-Organization  国武豊喜 監修;下村政嗣,山口智彦 編集  365-374  エヌ・ティー・エス  2009/11  入枝泰樹,太田徳子,川岸郁朗:基礎編 4章「システムと情報」 1節「システムバイオロジー」 1項「細胞内シグナル伝達における自己組織化」 
医科細菌学 改訂第4版  笹川千尋,林哲也 編  87-96  南江堂  2008/07  川岸郁朗: 第3章8 べん毛と走化性. 
リポソーム応用の新展開 〜人工細胞の開発に向けて〜  秋吉一成,辻井薫 監修  257-266  エヌ・ティー・エス  2005/06  坂野聡美,川岸郁朗 (2005) 膜を介したシグナル伝達. 
シリーズ・ニューバイオフィジックス 第7巻 生物のスーパーセンサー  日本製物物理学会 編集  133-146  共立出版  1997/07  川岸郁朗 : バクテリアの温度センサー 
View details...

Research paper (scientific journal)  Structural basis of the binding affinity of Mlp24p and Mlp37p for various amino acids  Y. Takahashi, S. Nishiyama, I. Kawagishi, K. Imada  Biochemical and Biophysical Research Communications  Elsevier  523, 233-238  2020/02/26  10.1016/j.bbrc.2019.12.055 
Research paper (scientific journal)  Joint  High pressure inhibits signaling protein binding to the flagellar motor and bacterial chemotaxis through enhanced hydration.  Hata, H., Nishihara, Y., Nishiyama, M., Sowa, Y., Kawagishi, I., & Kitao, A.  Scientific Reports  Springer Nature Limited  10, 2351  2020/02/11  10.1038/s41598-020-59172-3 
Research paper (scientific journal)  Joint  Calcium ions modulate amino acid sensing of the chemoreceptor Mlp24 of Vibrio cholerae.  Takahashi, Y., Nishiyama, S., Sumita, K., Kawagishi, I., & Imada, K.  Journal of Bacteriology  The American Society for Microbiology  201, e00779-18  2019/04/09  10.1128/JB.00779-18 
Research paper (scientific journal)  Joint  The dimerization site-2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.  Yamanaka, Y., Winardhi, R. S., Yamauchi, E., Nishiyama, S. I., Sowa, Y., Yan, J., Kawagishi, I., Ishihama, A. & Yamamoto, K.  Journal of Biological Chemistry  The American Society for Biochemistry and Molecular Biology  293, 9496-9505  2018/04/25  10.1074/jbc.RA117.001425 
Research paper (scientific journal)  Joint  Chemotactic behaviors of Vibrio cholerae cells.  Kawagishi, I. & Nishiyama, S.  Minamino, T. & Namba, K. (eds.) The Bacterial Flagellum: Methods and Protocols, Methods in Molecular Biology  Springer Science+Business Media  1593, 259-271  2017/05/07  1940-6029  10.1007/978-1-4939-6927-2_21  Vibrio cholerae, the causative agent of cholera, swims in aqueous environments with a single polar flagellum. In a spatial gradient of a chemical, the bacterium can migrate in “favorable” directions, a property that is termed chemotaxis. The chemotaxis of V. cholerae is not only critical for survival in various environments and but also is implicated in pathogenicity. In this chapter, we describe how to characterize the chemotactic behaviors of V. cholerae: these methods include swarm assay, temporal stimulation assay, capillary assay, and receptor methylation assay. 
View details...

Research presentations
Oral presentation(general)  Structure and function of bacterial signal transducing sensor complexes  The 86th annual meeting of Japanese Society for Bacteriology, International Symposium 2 "Bacterial nanomachines: substrate targeting and translocation"  2013/03/18  In the chemotaxis of Escherichia coli, all of the relevant protein components have been identified and characterized extensively in terms of biochemistry and three-dimensional structures. Thus we can ask the nature of the system at the molecular level. It should be noted that these proteins are not randomly distributed in a cell: the chemoreceptors (MCPs), the histidine kinase CheA and the adaptor CheW form a huge cluster that localizes to a cell pole. Other signaling components co-localize with the MCP-CheW-CheA cluster, resulting in a large sensor/singlaing complex or a signalosome. Clustering of the signaling proteins has been implicated in signal amplification and adaptation. Genome sequencing revealed that some bacterial species, including Vibrio cholerae, are equipped with multiple sets of chemotaxis-like signaling systems. Clustering of the signaling proteins therefore may support coherent signaling by avoiding crosstalk. In this talk, we will discuss on the molecular architecture, biogenesis and physiological significance of the sensor complexes in E. coli and V. cholerae. 
Oral presentation(general)  増殖停滞期における細菌の環境応答  第85回日本細菌学会総会  2012/03/28 
Oral presentation(general)  大腸菌走化性のミッシングリンク:忌避応答のメカニズムを探る  2011年度遺伝研研究会「単細胞生物における細胞構築と増殖制御の研究」  2012/03/21 
Oral presentation(general)  Interigent sensing in organisms: toward understanding how bacterial poymodal sensors work  ナノ・バイオ ICTシンポジウム ~バイオに学ぶ未来ICT型センシングテクノロジー~  2012/02/15  生物にとって「センシング」は普遍的かつ重要な機能である.どの細胞も環境変化を的確にモニターし,適切に応答しなければ生きていけない.それは体長わずか数µmの小さな細菌たちでも同様で,一見単純に見えるが,地球上のさまざまな環境中で生きていくために,巧妙なセンシングシステムを備えている.例えば,大腸菌は,細胞内外の環境変化を感知する.ほとんどの場合,細胞外からの刺激を認識するセンサーは,細胞膜に存在するタンパク質(受容体)であり,その後の情報プロセシングも,おもにタンパク質が担う.多くの場合,最終的な出力は遺伝子の発現制御であり,比較的時間のかかる応答である.それに対し,遺伝子発現制御を伴わない瞬時の応答も必要である.その代表例が走化性である.走化性とは,"好ましい"環境を感知してその場所に集まる能力であり,いわば原始的な「感覚系」である.その情報の入力から出力までの全ての因子が同定されており,精力的に研究されている.この系では,微細な入力を増幅できること,一定の刺激が持続すると応答が減衰すること(適応)など,感覚系一般に見られる特徴を備えている.走化性受容体は,複数の化学物質のほか,温度やpHも認識する多機能センサーとして注目される.また,この受容体は,他のシグナル伝達タンパク質とともに,細胞の極で巨大クラスターを形成して機能する.本講演では,走化性受容体の構造・機能・局在を中心に,生物のもつ巧妙なセンシング機能とそれを実現するしくみについての現在の知見を紹介したい. 
Poster presentation  Mechanisms of amino acid ligand recognition by bacterial chemoreceptors  Gordon Research Conference on Sensory Transduction in Microorganisms  2012/01 
View details...

Intellectual property rights
Patent  微生物分析装置及び微生物分析方法  特願2015-096824  2015/05/11 
View details...

平成18年度 日本細菌学会小林六造記念賞  2007/03/27  Studies on bacterial motility and chemosensory transduction 
View details...

Alloted class
Cell biology I 
Cell structure and function II (Cell function) 
Bioscience basic experiments I 
Bioscience basic exercises I 
View details...

Social Contribution
日本細菌学会 評議員  2015/01/01-2017/12/31 
日本細菌学会関東支部会 評議員  2012/01-2013/12 
日本生物物理学会 平成21・22年度委員  2009/04-2011/03 
日本細菌学会 評議員  2009/01-2011/12 
生物遺伝資源に関する大腸菌小委員会及びNBRP原核生物遺伝資源運営委員会  2007/04-Present 
View details...

Memberships of academic societies
日本メンデル協会  2013/01-Present 
American Society for Microbiology  2009/01-Present 
Japanese Society of Bacteriology  1995/04-Present 
The Japanese Biochemical Society  1991/04-Present 
The Biophysical Society of Japan  1991/04-Present 
View details...